AnyonWiki

General Constructions

This page describes standard mathematical constructions for building new fusion rings and fusion categories from existing ones. These constructions are fundamental tools in the classification and study of topological phases.

Direct Sum (Disjoint Union)

Fusion Rings

The direct sum R1R2\mathcal{R}_1 \oplus \mathcal{R}_2 of two fusion rings:

Objects: Disjoint union of simple objects

{Xi(1)}i=0r11{Yj(2)}j=0r21\{X_i^{(1)}\}_{i=0}^{r_1-1} \sqcup \{Y_j^{(2)}\}_{j=0}^{r_2-1}

Multiplication:

  • Objects from different rings don't fuse
  • Xi(1)Yj(2)=0X_i^{(1)} \otimes Y_j^{(2)} = 0
  • Within each ring, original fusion rules apply

Properties:

  • Rank: r1+r2r_1 + r_2
  • DFP2=(D1FP)2+(D2FP)2\mathcal{D}_{\text{FP}}^2 = (\mathcal{D}_1^{\text{FP}})^2 + (\mathcal{D}_2^{\text{FP}})^2

Fusion Categories

For categories C1\mathcal{C}_1 and C2\mathcal{C}_2:

C1C2\mathcal{C}_1 \boxplus \mathcal{C}_2

Objects: Pairs (X,i)(X, i) where XCiX \in \mathcal{C}_i

Morphisms: Hom((X,i),(Y,j))={HomCi(X,Y)i=j0ij\text{Hom}((X,i), (Y,j)) = \begin{cases} \text{Hom}_{\mathcal{C}_i}(X,Y) & i=j \\ 0 & i \neq j \end{cases}

Note: Direct sum of categories is not a connected fusion category (has multiple units).

Tensor Product (Deligne Product)

Fusion Rings

The tensor product R1R2\mathcal{R}_1 \otimes \mathcal{R}_2:

Objects: Pairs (Xi(1),Yj(2))(X_i^{(1)}, Y_j^{(2)})

Multiplication:

(Xi(1),Yj(2))(Xk(1),Y(2))=(Xi(1)Xk(1),Yj(2)Y(2))(X_i^{(1)}, Y_j^{(2)}) \otimes (X_k^{(1)}, Y_\ell^{(2)}) = (X_i^{(1)} \otimes X_k^{(1)}, Y_j^{(2)} \otimes Y_\ell^{(2)})

Properties:

  • Rank: r1r2r_1 \cdot r_2
  • DFP2=(D1FP)2(D2FP)2\mathcal{D}_{\text{FP}}^2 = (\mathcal{D}_1^{\text{FP}})^2 \cdot (\mathcal{D}_2^{\text{FP}})^2

Fusion Categories (Deligne Product)

The Deligne tensor product C1C2\mathcal{C}_1 \boxtimes \mathcal{C}_2:

Objects: Pairs X1X2X_1 \boxtimes X_2

Tensor: (X1X2)(Y1Y2)=(X1Y1)(X2Y2)(X_1 \boxtimes X_2) \otimes (Y_1 \boxtimes Y_2) = (X_1 \otimes Y_1) \boxtimes (X_2 \otimes Y_2)

F-symbols: Product of individual F-symbols

FW1W2(X1X2)(Y1Y2)(Z1Z2)=FW1X1Y1Z1FW2X2Y2Z2F^{(X_1 \boxtimes X_2)(Y_1 \boxtimes Y_2)(Z_1 \boxtimes Z_2)}_{W_1 \boxtimes W_2} = F^{X_1 Y_1 Z_1}_{W_1} \cdot F^{X_2 Y_2 Z_2}_{W_2}

Braiding (if both braided):

cX1X2,Y1Y2=(cX1,Y1cX2,Y2)c_{X_1 \boxtimes X_2, Y_1 \boxtimes Y_2} = (c_{X_1,Y_1} \boxtimes c_{X_2,Y_2})
Example: Fibonacci Tensor Product

Fib \otimes Fib:

  • Rank: 2×2=42 \times 2 = 4
  • Simple objects: {11,1τ,τ1,ττ}\{\mathbf{1} \boxtimes \mathbf{1}, \mathbf{1} \boxtimes \tau, \tau \boxtimes \mathbf{1}, \tau \boxtimes \tau\}
  • D2=(1+ϕ2)×(1+ϕ2)13.09\mathcal{D}^2 = (1 + \phi^2) \times (1 + \phi^2) \approx 13.09

Group Rings

Group Fusion Ring

For finite group GG, the group ring C[G]\mathbb{C}[G]:

Objects: Group elements {g}gG\{g\}_{g \in G}

Multiplication: Group multiplication

gh=ghg \otimes h = gh

Properties:

  • Rank: G|G|
  • All di=1d_i = 1 (trivial FP dimensions)
  • D2=G\mathcal{D}^2 = |G|
  • Pointed fusion ring

Pointed Categories

A pointed category C(G,ω)\mathcal{C}(G, \omega):

Objects: Invertible objects corresponding to GG

Associator: 3-cocycle ωH3(G,C)\omega \in H^3(G, \mathbb{C}^*)

Properties:

  • All objects have quantum dimension 1
  • Braided if GG is abelian
  • Modular only if G={e}G = \{e\}

Representation Categories

Rep(G)\text{Rep}(G)

The category of finite-dimensional representations of finite group GG:

Objects: Irreducible representations VρV_\rho

Morphisms: Intertwining operators

Tensor: Tensor product of representations

Properties:

  • Rank = number of conjugacy classes
  • Symmetric braiding
  • Modular only for trivial group

Quantum Group Representations

For quantum group Uq(g)U_q(\mathfrak{g}) at root of unity q=e2πi/q = e^{2\pi i/\ell}:

C(sl2,k)\mathcal{C}(\mathfrak{sl}_2, k): Level kk category

  • Rank: k+1k+1
  • Non-pointed (except k=1k=1)
  • Modular for all k1k \geq 1

Drinfeld Center (Quantum Double)

Construction

The Drinfeld center Z(C)\mathcal{Z}(\mathcal{C}) of a fusion category C\mathcal{C}:

Objects: Pairs (X,γ)(X, \gamma) where:

  • XCX \in \mathcal{C}
  • γ\gamma: half-braiding γY:XYYX\gamma_Y: X \otimes Y \to Y \otimes X

Properties:

  • Always braided (canonical braiding)
  • If C\mathcal{C} is modular, then Z(C)CCrev\mathcal{Z}(\mathcal{C}) \cong \mathcal{C} \boxtimes \mathcal{C}^{\text{rev}}
  • Rank: i(Nii)2\sum_i (N_i^i)^2 where NiiN_i^i are multiplicities

Quantum Double of Group

For finite group GG, the Drinfeld center Z(C(G))\mathcal{Z}(\mathcal{C}(G)):

Corresponds to: D(G)D(G) quantum double

Objects: Pairs (g,ρ)(g, \rho)

  • gg: conjugacy class
  • ρ\rho: irrep of centralizer CG(g)C_G(g)

Properties:

  • Rank: number of pairs (g,ρ)(g, \rho)
  • Always modular
  • Special case: D(S3)D(S_3) has rank 8

Equivariantization

Gauging Symmetry

Given fusion category C\mathcal{C} with action of finite group GG:

Equivariantization: CG\mathcal{C}^G

Objects: Objects of C\mathcal{C} with compatible GG-action

Effect: "Gauging" the GG-symmetry

De-equivariantization: Inverse process

Example: Tambara-Yamagami Categories

From Zn\mathbb{Z}_n pointed category:

  • Add non-invertible object mm
  • Fusion: gh=ghg \otimes h = gh, gm=mg \otimes m = m, mm=gZngm \otimes m = \sum_{g \in \mathbb{Z}_n} g

Rank: n+1n+1

Quotients and Extensions

Taking Quotients

For fusion ring R\mathcal{R} with ideal II:

Quotient: R/I\mathcal{R}/I

Fewer simple objects, some fusions become zero.

Extensions

Extension problem: Given R1R2\mathcal{R}_1 \subset \mathcal{R}_2, classify all fusion rings R\mathcal{R} with:

R1RR2\mathcal{R}_1 \subset \mathcal{R} \subset \mathcal{R}_2

Group extension: Extend pointed category by group homomorphism

Near-Group Categories

Definition: Fusion category where all but one simple object is invertible.

Structure:

  • Group part: GG of invertible objects
  • Non-invertible object: mm
  • Fusion: gm=mg=mg \otimes m = m \otimes g = m for gGg \in G
  • mm=gGnggm \otimes m = \sum_{g \in G} n_g g for some coefficients ngn_g

Example: Tambara-Yamagami categories

Module Categories and Induction

Module Category

A module category M\mathcal{M} over fusion category C\mathcal{C}:

Action: :C×MM\otimes: \mathcal{C} \times \mathcal{M} \to \mathcal{M}

Morita Equivalence: C\mathcal{C} and D\mathcal{D} Morita equivalent if they have equivalent module categories

Induction/Restriction

For subcategory DC\mathcal{D} \subset \mathcal{C}:

Induction: IndDC:DC\text{Ind}_{\mathcal{D}}^{\mathcal{C}}: \mathcal{D} \to \mathcal{C}

Restriction: ResDC:CD\text{Res}_{\mathcal{D}}^{\mathcal{C}}: \mathcal{C} \to \mathcal{D}

Frobenius reciprocity holds.

Condensation

Anyon Condensation

Physical process: Bosonic anyons condense

Mathematical: Choose algebra object ACA \in \mathcal{C}, form CA\mathcal{C}_A (local modules)

Effect:

  • Reduces number of anyons
  • Some anyons become confined
  • New fusion rules emerge

Relevance: Phase transitions in topological phases

Categorical Operations

Opposite Category

Cop\mathcal{C}^{\text{op}}: Reverse all morphisms

For braided C\mathcal{C}:

Crev\mathcal{C}^{\text{rev}}: Reverse braiding cX,Yrev=cY,X1c_{X,Y}^{\text{rev}} = c_{Y,X}^{-1}

Dual Category

C\mathcal{C}^*: Replace objects with duals

In fusion categories: CC\mathcal{C}^* \cong \mathcal{C}

Series and Families

Level kk Series

For Lie algebra g\mathfrak{g}:

C(g,k)\mathcal{C}(\mathfrak{g}, k): Level kk category

Examples:

  • C(sl2,k)\mathcal{C}(\mathfrak{sl}_2, k): Rank k+1k+1
  • C(sl3,k)\mathcal{C}(\mathfrak{sl}_3, k): (k+1)(k+2)2\frac{(k+1)(k+2)}{2} simple objects

Haagerup-Izumi Series

Non-group, non-quantum-group categories:

  • Haagerup: Rank 6
  • Extended Haagerup: Rank 13
  • Asaeda-Haagerup: Rank 7

Computational Tools

Software Packages

Anyonica:

  • Implements constructions
  • Computes tensor products
  • Finds Drinfeld centers

TensorCategories.jl:

  • Module categories
  • Induction/restriction
  • Condensation

Learn more →

Applications

These constructions are used for:

  • Classification: Systematic enumeration
  • Phase transitions: Condensation
  • Duality: Understanding category equivalences
  • Quantum computation: Building new computational models

Browse Examples

See these constructions in the database:

View Fusion Rings →
View Fusion Categories →