AnyonWiki

Fusion Categories

A fusion category is a mathematical structure that provides a categorical framework for studying topological phases of matter, quantum field theories, and anyon models. It categorifies the notion of a fusion ring.

Definition: Fusion Category

A fusion category C\mathcal{C} is a C\mathbb{C}-linear, semisimple, rigid monoidal category with:

  1. Finitely many simple objects up to isomorphism
  2. Simple tensor unit: 1\mathbf{1} is simple
  3. Finite-dimensional Hom spaces: dimHom(X,Y)<\dim \text{Hom}(X,Y) < \infty
  4. Every object has finite length

Key Components:

  • Objects: Obj(C)\text{Obj}(\mathcal{C}) with simple objects {X0=1,X1,,Xr1}\{X_0 = \mathbf{1}, X_1, \ldots, X_{r-1}\}
  • Morphisms: HomC(X,Y)\text{Hom}_{\mathcal{C}}(X,Y) are C\mathbb{C}-vector spaces
  • Tensor product: :C×CC\otimes: \mathcal{C} \times \mathcal{C} \to \mathcal{C}
  • Duals: Each object XX has a dual XX^*

Structure Data

F-Symbols (6j Coefficients)

The F-symbols encode the associativity of the tensor product. They satisfy the pentagon equation:

μFijkmμFpmnijν=ρFpkniρFpijnkνρ\sum_{\mu} F^{ijk}_{\ell}{}^{m\mu} F^{m \ell n}_{p}{}^{ij\nu} = \sum_{\rho} F^{k \ell n}_{p}{}^{i\rho} F^{ijn}_{p}{}^{k\nu\rho}

These are complex numbers FdabcCF^{abc}_d \in \mathbb{C} that define natural isomorphisms:

(XaXb)XcFXa(XbXc)(X_a \otimes X_b) \otimes X_c \xrightarrow{F} X_a \otimes (X_b \otimes X_c)

R-Symbols (Braiding)

For braided fusion categories, the R-symbols encode the braiding. They satisfy the hexagon equations:

RcabCR^{ab}_c \in \mathbb{C}

These define natural isomorphisms:

XaXbRXbXaX_a \otimes X_b \xrightarrow{R} X_b \otimes X_a

Grothendieck Ring

The Grothendieck ring K0(C)K_0(\mathcal{C}) of a fusion category is a fusion ring with:

  • Basis: [X0],[X1],,[Xr1][X_0], [X_1], \ldots, [X_{r-1}] (isomorphism classes)
  • Multiplication: [Xi][Xj]=kNijk[Xk][X_i] \cdot [X_j] = \sum_k N_{ij}^k [X_k]

where NijkN_{ij}^k are the fusion coefficients from:

XiXjk(Xk)NijkX_i \otimes X_j \cong \bigoplus_k (X_k)^{\oplus N_{ij}^k}

Types of Fusion Categories

Pivotal Fusion Category (PFC)

A fusion category with a pivotal structure - a monoidal natural isomorphism:

j:IdC( )j: \text{Id}_{\mathcal{C}} \to (\ )^{**}

This gives:

  • Left and right duals coincide
  • Categorical dimensions: dim(X)C\dim(X) \in \mathbb{C}
  • Quantum dimensions: di=dim(Xi)d_i = \dim(X_i)

Spherical Fusion Category

A pivotal category where left and right traces coincide. The pivotal structure is spherical if:

trL(f)=trR(f)\text{tr}_L(f) = \text{tr}_R(f)

for all morphisms f:XXf: X \to X.

Unitary Fusion Category (UFC)

A fusion category with a unitary structure:

  • C\mathbb{C}-linear structure extended to *-structure
  • Hom(X,Y)\text{Hom}(X,Y) are Hilbert spaces
  • Tensor product is unitary
  • Quantum dimensions di>0d_i > 0 are real

Physical significance: Models physical anyon systems

Braided Fusion Category (BFC)

A fusion category equipped with a braiding:

cX,Y:XYYXc_{X,Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X

satisfying naturality and hexagon axioms.

Types of braiding:

  • Symmetric: cY,XcX,Y=idXYc_{Y,X} \circ c_{X,Y} = \text{id}_{X \otimes Y}
  • Non-degenerate: Related to modular categories

Ribbon Fusion Category

A braided pivotal category with a twist (ribbon structure):

θX:XX\theta_X: X \to X

satisfying:

  • θ1=id1\theta_{\mathbf{1}} = \text{id}_{\mathbf{1}}
  • θXY=cY,XcX,Y(θXθY)\theta_{X \otimes Y} = c_{Y,X} \circ c_{X,Y} \circ (\theta_X \otimes \theta_Y)

Modular Fusion Category (MFC)

A braided fusion category where the S-matrix is non-degenerate:

Sij=tr(cXj,XicXi,Xj)S_{ij} = \text{tr}(c_{X_j, X_i} \circ c_{X_i, X_j})

Properties:

  • S-matrix: (r×r)(r \times r) symmetric matrix
  • T-matrix: Tij=δijθiT_{ij} = \delta_{ij} \theta_i (diagonal)
  • S2=CS^2 = C (charge conjugation)
  • (ST)3=S2(ST)^3 = S^2

Physical significance: Describes (2+1)D topological phases

Categorical Dimensions

Quantum Dimensions

For a pivotal category, the quantum dimension of XiX_i is:

di=dim(Xi)Cd_i = \dim(X_i) \in \mathbb{C}

In unitary categories: diR>0d_i \in \mathbb{R}_{>0}

Global Dimension

The global dimension (categorical dimension) is:

D2=i=0r1di2\mathcal{D}^2 = \sum_{i=0}^{r-1} d_i^2

For spherical categories, this equals DFP2\mathcal{D}_{\text{FP}}^2 (Frobenius-Perron dimension).

Formal Naming Convention

Fusion categories in AnyonWiki use the convention:

FCd,e,f,ga,b,c\text{FC}^{a,b,c}_{d,e,f,g}

This seven-parameter code uniquely identifies the category and encodes:

  • Associated fusion ring information
  • Categorical structure type
  • Serial number in classification

Pentagon and Hexagon Equations

Pentagon Equation

The F-symbols must satisfy coherence (pentagon equation) for all objects:

FnjklFminl=pFpiklFmijpFpjklF^{jkl}_n F^{inl}_m = \sum_p F^{ikl}_p F^{ijp}_m F^{jkl}_p

Computational challenge: System of polynomial equations in F-symbols

Hexagon Equations

For braided categories, R-symbols satisfy (with F-symbols):

(Hexagon I and II equations)\text{(Hexagon I and II equations)}

These ensure braiding is compatible with associativity.

Categorification

Question: Does a given fusion ring arise from a fusion category?

Answer: Not always! Some fusion rings cannot be categorified.

Obstruction Theory

Obstacles to categorification include:

  • Pentagon equation has no solutions
  • Solutions exist but not unitary
  • Gauge freedom complications

Learn more →

Data in AnyonWiki

For each fusion category, the database may contain:

  • F-symbols: Pentagon equation solutions
  • R-symbols: Hexagon equation solutions
  • Pivotal structure: Pivotal element data
  • Quantum dimensions: Numerical values
  • S-matrix: For modular categories
  • T-matrix: For modular categories

File Formats

Pentagon solutions (pentsol):

  • Tab-separated: i j k l m n Re(F) Im(F)
  • First 6 columns: object labels
  • Last 2 columns: Real and imaginary parts

Hexagon solutions (hexsol):

  • Similar format for R-symbols

Important Examples

Pointed Categories

Categories where all simple objects are invertible:

  • C(Zn)\mathcal{C}(\mathbb{Z}_n) - Cyclic group
  • C(G)\mathcal{C}(G) - Finite group GG

Rep(G)\text{Rep}(G)

Category of finite-dimensional representations of finite group GG:

  • Rank = number of conjugacy classes
  • Braided if GG is abelian
  • Modular only for G={e}G = \{e\}

Quantum Group Categories

From quantum groups Uq(g)U_q(\mathfrak{g}):

  • C(su(2)k)\mathcal{C}(su(2)_k) - SU(2)SU(2) level kk
  • Contains k+1k+1 simple objects
  • Modular for all k1k \geq 1

Fibonacci Category

  • Rank 2, non-pointed
  • Universal for topological quantum computation
  • D2=ϕ2+1\mathcal{D}^2 = \phi^2 + 1 (golden ratio squared)

Ising Category

  • Rank 3
  • Describes Majorana fermions
  • Basis: {1,σ,ψ}\{\mathbf{1}, \sigma, \psi\}

Software Tools

Computing Category Data

Anyonica (Mathematica):

FusionCategoryByCode[[a,b,c,d,e,f,g]]

TensorCategories.jl (Julia):

anyonwiki(a,b,c,d,e,f,g)

Learn more →

Applications

Fusion categories appear in:

  • Topological quantum computation: Anyon models, quantum gates
  • TQFT: (2+1)D and (3+1)D topological theories
  • Conformal field theory: Rational CFTs
  • Subfactor theory: Planar algebras
  • Condensed matter: Topological phases of matter
  • Quantum groups: Representation categories

Browse Categories

Explore the complete database of fusion categories:

View All Fusion Categories →