AnyonWiki

Conventions Used on the AnyonWiki

This page collects some of the (pages on) conventions that will be used on the wiki. Its aim is on the one hand to settle conventions and on the other to clarify the meaning of some commonly used symbols and expressions.

Pages Explaining Conventions

These might later be (partially) imported in this page.

  • Indexing of Roots of Polynomials - Documentation on how polynomial roots are indexed and referenced
  • SS-matrix - Conventions for the S-matrix in modular fusion categories

Fusion Ring Naming

Formal Name Convention

Fusion rings follow the standardized notation:

FRnr,m\text{FR}^{r,m}_n

Components:

  • FR: Fusion Ring identifier
  • rr (superscript, first): Rank - number of simple objects
  • mm (superscript, second): Multiplicity structure parameter
  • nn (subscript): Serial number within the classification

Examples

Formal NameMeaning
FR11,0\text{FR}^{1,0}_1Trivial ring, rank 1
FR12,0\text{FR}^{2,0}_1Z2\mathbb{Z}_2 ring, rank 2, serial 1
FR22,0\text{FR}^{2,0}_2Fibonacci ring, rank 2, serial 2
FR13,0\text{FR}^{3,0}_1Ising ring, rank 3, serial 1
FR35,4\text{FR}^{5,4}_3Rank 5, multiplicity parameter 4, serial 3

Common Names

Many fusion rings have common names from physics or representation theory:

  • Trivial: FR11,0\text{FR}^{1,0}_1
  • Zn\mathbb{Z}_n: Cyclic group rings
  • Fibonacci (Fib): FR22,0\text{FR}^{2,0}_2
  • Ising: FR13,0\text{FR}^{3,0}_1
  • Rep(Dn)\text{Rep}(D_n): Dihedral group representations
  • PSU(2)k\text{PSU}(2)_k: Quantum SU(2)SU(2) at level kk

Fusion Category Naming

Formal Name Convention

Fusion categories use a seven-parameter code:

FCd,e,f,ga,b,c\text{FC}^{a,b,c}_{d,e,f,g}

Components:

  • FC: Fusion Category identifier
  • (a,b,c)(a,b,c) (superscript): Triple encoding categorical structure
  • (d,e,f,g)(d,e,f,g) (subscript): Quadruple for refined classification

Relation to Fusion Rings

The category naming relates to its underlying fusion ring:

  • Parameters encode rank, structure type, and categorification data
  • Multiple categories can share the same fusion ring

Software Usage

To access a category by formal code:

Anyonica (Mathematica):

FusionCategoryByCode[[a,b,c,d,e,f,g]]
(* Shorthand *)
FCBC[[a,b,c,d,e,f,g]]

TensorCategories.jl (Julia):

anyonwiki(a,b,c,d,e,f,g)

Formal Codes

Structure

Each fusion ring has a unique formal code as an integer array:

[rank,m1,m2,n][\text{rank}, m_1, m_2, n]

Parameters:

  1. rank: Number of simple objects
  2. m1m_1: Primary multiplicity indicator (usually 1 for multiplicity-free)
  3. m2m_2: Secondary structural parameter
  4. nn: Serial number in classification

Examples

Fusion RingFormal Code
Trivial[1, 1, 0, 1]
Z2\mathbb{Z}_2[2, 1, 0, 1]
Fibonacci[2, 1, 0, 2]
Ising[3, 1, 0, 1]
Rep(D3)\text{Rep}(D_3)[3, 1, 0, 2]

Purpose

  • Unique identification: No two fusion rings share the same formal code
  • Computational: Used in database queries and software
  • Classification: Organizes rings by structural properties

Barcodes

Definition

A barcode is an alternative unique identifier for fusion rings, represented as an integer array.

Structure

The barcode encodes:

  • Fusion rule structure
  • Derived from multiplication table
  • Canonical form independent of object labeling

Example

For Fibonacci ring:

barcode: [specific integer sequence]

Usage

  • Database indexing: Alternative to formal codes
  • Isomorphism checking: Compare barcodes to test if rings are isomorphic
  • DOI reference: Cited in research papers

Mathematical Notation

Objects and Morphisms

Simple Objects:

X0=1,X1,X2,,Xr1X_0 = \mathbf{1}, X_1, X_2, \ldots, X_{r-1}

Tensor Product:

XiXj=k(Xk)NijkX_i \otimes X_j = \bigoplus_k (X_k)^{\oplus N_{ij}^k}

Dual Objects:

Xi or XiX_i^* \text{ or } \overline{X_i}

Morphism Spaces:

HomC(X,Y) or Hom(X,Y)\text{Hom}_{\mathcal{C}}(X, Y) \text{ or } \text{Hom}(X, Y)

Fusion Coefficients

Notation: NijkN_{ij}^k or NijkN^k_{ij}

Meaning: Multiplicity of XkX_k in XiXjX_i \otimes X_j

Fusion Matrix:

(Ni)jk=Nijk(N_i)_{jk} = N_{ij}^k

Dimensions

Frobenius-Perron Dimension:

diFP or simply did_i^{\text{FP}} \text{ or simply } d_i

Quantum Dimension (in categories):

dim(Xi) or di\dim(X_i) \text{ or } d_i

Global Dimension:

D2=i=0r1di2\mathcal{D}^2 = \sum_{i=0}^{r-1} d_i^2

In Database: Listed as DFP2\mathcal{D}_{\text{FP}}^2

Structure Constants

F-Symbols

Notation:

Fdabc or [Fcab]dμνeρσF^{abc}_d \text{ or } \left[F^{ab}_c\right]_{d\mu\nu}^{e\rho\sigma}

Simplified (multiplicity-free):

FdabcCF^{abc}_d \in \mathbb{C}

Pentagon Equation:

μFijkmμFpmnijν=ρFpkniρFpijnkνρ\sum_{\mu} F^{ijk}_{\ell}{}^{m\mu} F^{m\ell n}_{p}{}^{ij\nu} = \sum_{\rho} F^{k\ell n}_{p}{}^{i\rho} F^{ijn}_{p}{}^{k\nu\rho}

R-Symbols

Notation:

Rcab or [Rba]cμνR^{ab}_c \text{ or } [R^a_b]_{c\mu}^{\nu}

Braiding:

cX,Y:XYRYXc_{X,Y}: X \otimes Y \xrightarrow{R} Y \otimes X

Hexagon Equations: Relate RR and FF symbols

S-Matrix

Notation:

S=(Sij)0i,j<rS = (S_{ij})_{0 \leq i,j < r}

Definition (modular categories):

Sij=1Dtr(cXj,XicXi,Xj)S_{ij} = \frac{1}{\mathcal{D}} \text{tr}(c_{X_j, X_i} \circ c_{X_i, X_j})

Properties:

  • Symmetric: Sij=SjiS_{ij} = S_{ji}
  • Unitary: SS=IS S^\dagger = I
  • S2=CS^2 = C (charge conjugation)

T-Matrix

Notation:

T=(Tij)0i,j<rT = (T_{ij})_{0 \leq i,j < r}

Diagonal:

Tij=δijθiT_{ij} = \delta_{ij} \theta_i

where θi\theta_i is the twist (topological spin) of XiX_i.

Character Notation

Character Map:

χ:RC\chi: \mathcal{R} \to \mathbb{C}

Character Table: Matrix (χi(Xj))(\chi_i(X_j))

Indexed:

  • Rows: Characters χ0,χ1,,χr1\chi_0, \chi_1, \ldots, \chi_{r-1}
  • Columns: Simple objects X0,X1,,Xr1X_0, X_1, \ldots, X_{r-1}

Database Fields

JSON Structure

Fusion Ring Entry:

{
  "formal_code": [r, m1, m2, n],
  "barcode": [array of integers],
  "texnames": ["LaTeX name 1", "LaTeX name 2", ...],
  "mult_tab": [[fusion rules]],
  "numeric_characters": [[character values]],
  "numeric_frobenius_perron_dimensions": [d_0, d_1, ...],
  "numeric_frobenius_perron_dimension": D_FP^2,
  "tensor_product_decompositions": {...},
  "sub_fusion_rings": {...},
  "references": ["ref1", "ref2"],
  "software": ["software used"],
  "info": "description"
}

Field Descriptions

texnames: Array of alternative LaTeX names

  • First entry: Primary common name
  • Additional entries: Alternative notations

mult_tab: Multiplication table

  • mult_tab[i][j] = array of indices kk where Nijk0N_{ij}^k \neq 0
  • Multiplicity-free: each entry is 0 or 1 occurrence

numeric_characters: Character table matrix

  • Rows: Characters
  • Columns: Simple objects
  • Values: Complex numbers (real for unitary)

File Naming

Downloaded Files

Structure Constants:

  • pentsol_*.txt: Pentagon equation solutions (F-symbols)
  • hexsol_*.txt: Hexagon equation solutions (R-symbols)
  • pivsol_*.txt: Pivotal structure data

Format (tab-separated):

i  j  k  l  m  n  Re(F)  Im(F)

First 6 columns: Object labels
Last 2 columns: Real and imaginary parts

LaTeX Rendering

In Documentation

Inline Math: Use $...$ or \(...\)

Display Math: Use $$...$$ or \[...\]

Common Symbols

SymbolLaTeXMeaning
1\mathbf{1}\mathbf{1}Identity object
\otimes\otimesTensor product
\oplus\oplusDirect sum
C\mathcal{C}\mathcal{C}Category
R\mathcal{R}\mathcal{R}Ring
DFP2\mathcal{D}_{\text{FP}}^2\mathcal{D}_{\text{FP}}^2FP dimension squared
Zn\mathbb{Z}_n\mathbb{Z}_nCyclic group

Abbreviations

Category Types

AbbreviationFull Name
FCFusion Category
PFCPivotal Fusion Category
UFCUnitary Fusion Category
BFCBraided Fusion Category
MFCModular Fusion Category
UMTCUnitary Modular Tensor Category

Other Terms

AbbreviationFull Name
FPFrobenius-Perron
QDQuantum Dimension
TQFTTopological Quantum Field Theory
6jSix-j symbol (F-symbol)
DOIDigital Object Identifier

Version and Updates

Data Version

AnyonWiki data follows semantic versioning:

  • Major: Significant structural changes
  • Minor: New entries added
  • Patch: Corrections and updates

Citing Data

When citing a specific fusion ring or category:

FR^{r,m}_n from AnyonWiki [version]
DOI: [if available]

References

For more on naming conventions, see:

  • Liu, Palcoux, Ren (2022) - Classification paper
  • Slingerland, Vercleyen (2022) - Low rank fusion rings
  • AnyonWiki GitHub repository - Implementation details